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Goal

The goal of this talk is to prove the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)
There exists a contact form α on S3 such that

Tmin(α)2 > volα∧dα(S3)

where Tmin(α) is the minimal period of the closed Reeb orbits.

Remark
(1) The conclusion above does not hold for α= α0, the standard
contact structure of S3. In fact, Tmin = π and volα∧dα(S3) = π2

(Exercise). (2) The α constructed in Theorem above satisfies many
other nice properties, but we will not emphasize those in this talk.
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Strategy
• Denote by D the (closed) unit disk of C, with the standard
symplectic form ω= dx ∧ dy and primitive λ= 1

2(xdy − ydx).

• Let Hamc(D̊,ω) denote the compactly supported Hamiltonian
diffeomorphism group on (D̊,ω). There is Calabi homomorphism
denoted by Cal : Hamc(D̊,ω)→ R and defined by

Cal(φ1
H) = 2

∫

[0,1]×D
H(t, z)dt ∧ω.

• Strategy goes as follows.

φ ∈ Hamc(D̊,ω) 
β a contact form
on solid torus D×R/πZ
(due to Bramham)

 
α a contact form
on S3 satisfying (1)

volα∧dα(S3) = π2 + Cal(φ). (1)

Moreover, this φ is special since Cal(φ)< 0 but Tmin(α)≥ π.
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Radial symmetric Hamiltonian on D

• Consider the autonomous Hamiltonian H : D→ R such that
H(z) = h(|z |2) where h : [0,1]→ R is defined in the following
picture (where circle regions are smoothed),

1

π

|z|2 = r2

h(|z|2)

h(|z|2) ≈ π(1− |z|2)

0

The slope is > −π.
z = 0 is the global maximum.

(Exercise)
(1) φ1

H(z) = e−2h′(|z |2)iz .

(2) Cal(φ1
H)≈ π2.

In general,

Cal(φ1
H) = 4π

∫ 1

0
rh(r2)dr .

• Observe that fixed points lie in neighborhood of ∂D and z = 0.
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Action function
Given a radial symmetric Hamiltonian function H : D→ R, where
H(z) = h(|z |2). Consider action function σ : D→ R defined by

σ(z) = h(|z |2)− |z |2h′(|z |2).

*This is the “y -intercept” of the tangent line along the graph of h(|z |2).

Remark
For a general φ ∈ Hamc(D̊,ω), action function is defined by
σ(z) =

∫

{t→φt(z)}λ+
∫ 1

0 Ht(φt(z))dt. (Exercise: φ∗λ−λ= dσ.)

Example
For H chosen earlier, action function is the following graph.

π

the unit disk

σ(z)
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Bramham’s construction (I)
• Consider τ(z) = σ(z) +π.

Twisting map t : D×R→ D×R

t : (z , s)→ (φ(z), s −τ(z))

is a free Z-action, denoted by ∼. Denote by M := (D×R)/∼.
More explicitly, observe that (z ,τ(z)) is identified with (φ(z),0),
then M is like a solid torus in the shaded region after identifying
the red sides.

(z, τ(z))

s = 0

s→ ∞π 2π

• Observe that t∗(λ+ ds) = λ+ ds (Exercise). Therefore, M
admits a well-defined contact form denoted by η.

• Near the boundary, M = U ×R/πZ where U is a neighborhood
of ∂D and η= λ+ ds.
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Bramham’s construction (II)
The desired contact form β is on the solid torus D×R/πZ. There
exists some diffeomorphism f : D×R/πZ→M as in the following
picture.

some diffeomorphism

We need extra care to make sure that the area of each slice is
preserved. Then define β = f ∗η. Still, near the boundary,
β = λ+ ds (since f is the identity near the boundary).

Example
One can compute that volβ∧dβ(D×R/πZ) = volη∧dηM ' 2π2.
Then, up to small gaps, we get

volβ∧dβ(D×R/πZ) = π2 + Cal(φ1
H).
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Global surfaces of section in S3

• Thomas taught us that S3 is not far from D×R/πZ.

Denote by
C the circle {|z1|= 1, z2 = 0} (which is a closed Reeb orbit of α0),
the morphism g : D̊×R/πZ→ S3\C defined by

g(r ,θ , s) =
�

rei(θ+2s),
p

1− r2e2is
�

is a diffeomorphism, which extends to map ∂D×R/πZ to the
circle C . Moreover, g∗α0 = λ+ ds.

• Define α= (g−1)∗β (and extend). Notice that α= α0 near C .

Proposition
For each fixed s ∈ R/πZ, the image im(g |D×{s}) is a disk-like
global surface of section (with boundary C) in S3.

• volα∧dα(S3) = volβ∧dβ(D×R/πZ), which implies the
volume-Calabi equation (1). Moreover, Tmin(α) = π (Exercise).
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A cheap variation

• So far, we have seen an example that some φ ∈ Hamc(D̊,ω)
results in a contact 1-form α on S3 which can satisfy the
volume-Calabi equation (1) and Tmin(α) = π, but unfortunately
Cal(φ)> 0.

• A cheap way to achieve Cal(φ)< 0 is by considering H := −H.
Then Cal(φ1

H
)≈ −π2. In this case, the action function and the

resulting Bramham’s construction are the following,

−π

the unit disk
σ(z)

π s→∞s = 0

small positive number

The equation (1) holds, but unfortunately Tmin(α) is very small!

• Need a new example to satisfy both Cal(φ)< 0 and Tmin(α)≥ π.
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Sinkhole (cf. Usher’s Banach-Mazur distance paper)

Example
Consider a disk inside D, denoted by D(z0,r0) = {|z − z0| ≤ r0}

and
an autonomous Hamiltonian compactly supported inside D̊(z0,r0)
given by, up to smoothing,

H(z) = −k ·
�

1−
|z − z0|2

r2
0

�

, where k > 0.

The Hamiltonian diffeomorphism φ = φ1
H is a rotation inside the

disk D(z0,r0). Then
Cal(φ)≈ −kπr2

0 ;
σ(z) = will be explained in 5 mins.

• Trick: Fix an ω-preserving diffeomorphism ψ on D̊ such that
ψ(z) = z + z0 on D(0,r0), and consider G = H ◦ψ. Then the
morphism φ1

G =ψ−1 ◦φ1
H ◦ψ rotates the disk D(0,r0).



Sinkhole (cf. Usher’s Banach-Mazur distance paper)

Example
Consider a disk inside D, denoted by D(z0,r0) = {|z − z0| ≤ r0} and
an autonomous Hamiltonian compactly supported inside D̊(z0,r0)
given by, up to smoothing,

H(z) = −k ·
�

1−
|z − z0|2

r2
0

�

, where k > 0.

The Hamiltonian diffeomorphism φ = φ1
H is a rotation inside the

disk D(z0,r0). Then
Cal(φ)≈ −kπr2

0 ;
σ(z) = will be explained in 5 mins.

• Trick: Fix an ω-preserving diffeomorphism ψ on D̊ such that
ψ(z) = z + z0 on D(0,r0), and consider G = H ◦ψ. Then the
morphism φ1

G =ψ−1 ◦φ1
H ◦ψ rotates the disk D(0,r0).



Sinkhole (cf. Usher’s Banach-Mazur distance paper)

Example
Consider a disk inside D, denoted by D(z0,r0) = {|z − z0| ≤ r0} and
an autonomous Hamiltonian compactly supported inside D̊(z0,r0)
given by, up to smoothing,

H(z) = −k ·
�

1−
|z − z0|2

r2
0

�

, where k > 0.

The Hamiltonian diffeomorphism φ = φ1
H is a rotation inside the

disk D(z0,r0). Then
Cal(φ)≈ −kπr2

0 ;

σ(z) = will be explained in 5 mins.

• Trick: Fix an ω-preserving diffeomorphism ψ on D̊ such that
ψ(z) = z + z0 on D(0,r0), and consider G = H ◦ψ. Then the
morphism φ1

G =ψ−1 ◦φ1
H ◦ψ rotates the disk D(0,r0).
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Conjugation formulas
• The following conjugation formulas for Cal and σ are useful.
Denote by σ = σφ to emphasize its dependence on morphism φ.

Proposition (Exercise)
For any ω-preserving diffeomorphism ψ on D̊,

Cal(ψ−1 ◦φ ◦ψ) = Cal(φ);
σψ−1◦φ◦ψ = σφ ◦ψ+ u − u ◦ (ψ−1 ◦φ ◦ψ), where
du =ψ∗λ−λ.

In particular, for our example, u = 1
2(x0y − y0x) on D(0,r0), where

z0 = x0 + iy0. Moreover,

σφ = σψ−1◦φ◦ψ ◦ψ−1 + u ◦ (ψ−1 ◦φ)− u ◦ψ−1
︸ ︷︷ ︸

hard to be precise

.

An estimation: |u ◦ (ψ−1 ◦φ)− u ◦ψ−1| ≤ r0|z0| ≤ r0, which
implies that

− k − r0 ≤ σφ ≤ r0. (2)
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Sinkholes + rotations
Consider sinkholes Di for i = 1, ...,4, sitting inside D in the
following symmetric way.

r =
√
2− 1

r

z1

Consider the following Hamiltonian diffeomorphisms.
(1) φ+ the rotation of D by π

2 . Profile: h(|z |2) = π
4 (1− |z |2).

(2) φ−i the rotation of Di by −0.73π. (Caution: opposite direction!)
Profile: h(|z |2) = −0.365π

�

1− |z−zi |2
r2

�

.

Denote

φ = φ+ ◦
4
∏

i=1
φ−i .
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Calabi and action function
• Compute Cal(φ) (recall that Cal is a homomorphism).

Cal(φ) = Cal(φ+) +
4
∑

i=1
Cal(φ−i )

= π2

4
+ 4

�

−0.365π ·π · r2�= −0.0004964π2 < 0.

• Compute σ = σφ. We need the following composition formula

σφ2◦φ1 = σφ2 ◦φ1 +σφ1 (Exercise).

Then we can compute

σφ = σφ+ ◦

� 4
∏

i=1
φ−i

�

+σ∏4
i=1φ

−
i

= σφ+ ◦

� 4
∏

i=1
φ−i

�

+
4
∑

i=1
σφ−i .
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Important observations on action function
Though we can not explicitly describe σφ, here are some
observations.

By (2), we have an estimation. For any z ∈ D,

σφ(z)≥ 0+ (−0.365π− (
p
2− 1)) = −1.56> −π

2
.

Since 0 /∈ ∪4
i=1Di , σφ(0) = σφ+(0) = π

4 >0.

Recall that in Bramham’s construction, (in order to get a free
Z-action), we consider a shifted action function

τ= σφ +π.

A schematic picture of Bramham’s solid torus (denoted earlier by
M) is the following.

s→ ∞π π + π
4

π
2

0 in the unit disk
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Final step: estimation of Tmin(α)

Closed Reeb orbit comes from two cases: (1) fixed point of φ on
D; (2) k-periodic points of φ on D.

• For Case (1), the only fixed point of φ is 0, and its period is
τ(0) = σφ(0) +π≥ π.

• For Case (2), for any k-periodic points (where k ≥ 2), the
corresponding closed orbit has its period equal to
kτ(z) = k(σφ(z) +π)≥ k · π2 ≥ π.

⇒ The conclusion is that Tmin(α)≥ π.

The upshot is:







volα∧dα(S3) = π2 + Cal(φ)
Cal(φ)< 0
Tmin(α)≥ π

⇒ Tmin(α)2 > volα∧dα(S3).
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Outlook
• One can re-do the computation above by starting with a very
narrow sector of D and rotate it making it symmetric. Then the
resulting φ will be C0-close to 1D (and α is C0-closed to α0).

• With higher regularity, the α we constructed in this talk is far
from α0. In fact, it is far from any Zoll contact form, i.e., all the
Reeb orbits are closed and the periods are the same. This is due to
the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)
There exists a C3-neighborhood N of the space of Zoll contact
forms on S3 such that for any α ∈ N ,

Tmin(α)2 ≤ volα∧dα(S3).

The equality holds if and only if α is Zoll.

Its proof runs our construction backwards, i.e., constructing an
ω-preserving diffeomorphism on D from a contact form on S3.
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From dynamics to geometry
Three ways to transfer dynamics to geometry.

• Bramham’s construction: φ ∈ Hamc(D̊,ω) −→ (S3,α) (which
bounds a star-shaped domain in R4).

• Eliashberg-Polterovich’s construction: given a positive loop of
contactomorphisms φ = {φt}t∈S1 on a Liouville-fillable contact
manifold (X ,α). The following construction results in a contact
star-shaped domain V (φ) ⊂cW × S1,

V (φ) := {(s,x , t) ∈ SX × S1 | s · h(t,x)< 1} ∪ (Core× S1)

where h(t,x) is the contact Hamiltonian of φ.

• Usher’s tube construction: given a Liouville domain (W ,λ) and
an autonomous Hamiltonian function H : W → R satisfying certain
“positivity condition”, the following construction results in another
Liouville domain,

WH := {(w , z) ∈W ×C |π|z |2 ≤ H(w)}.
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