Global surface of section and Hamiltonian dynamics on 2-disk

Jun Zhang

CRM - Université de Montréal

June 16, 2020

The goal of this talk is to prove the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)

There exists a contact form α on S^3 such that

$$T_{\min}(\alpha)^2 > \operatorname{vol}_{\alpha \wedge d\alpha}(S^3)$$

where $T_{\min}(\alpha)$ is the minimal period of the closed Reeb orbits.

The goal of this talk is to prove the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)

There exists a contact form α on S^3 such that

$$T_{\min}(\alpha)^2 > \operatorname{vol}_{\alpha \wedge d\alpha}(S^3)$$

where $T_{\min}(\alpha)$ is the minimal period of the closed Reeb orbits.

Remark

(1) The conclusion above does *not* hold for $\alpha=\alpha_0$, the standard contact structure of S^3 . In fact, $T_{\min}=\pi$ and $\operatorname{vol}_{\alpha\wedge d\alpha}(S^3)=\pi^2$ (Exercise).

The goal of this talk is to prove the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)

There exists a contact form α on S^3 such that

$$T_{\min}(\alpha)^2 > \operatorname{vol}_{\alpha \wedge d\alpha}(S^3)$$

where $T_{\min}(\alpha)$ is the minimal period of the closed Reeb orbits.

Remark

(1) The conclusion above does *not* hold for $\alpha=\alpha_0$, the standard contact structure of S^3 . In fact, $T_{\min}=\pi$ and $\operatorname{vol}_{\alpha\wedge d\alpha}(S^3)=\pi^2$ (Exercise). (2) The α constructed in Theorem above satisfies many other nice properties, but we will not emphasize those in this talk.

• Denote by $\mathbb D$ the (closed) unit disk of $\mathbb C$, with the standard symplectic form $\omega=dx\wedge dy$ and primitive $\lambda=\frac{1}{2}(xdy-ydx)$.

- Denote by $\mathbb D$ the (closed) unit disk of $\mathbb C$, with the standard symplectic form $\omega=dx\wedge dy$ and primitive $\lambda=\frac{1}{2}(xdy-ydx)$.
- Let $\operatorname{Ham}_c(\mathring{\mathbb{D}},\omega)$ denote the compactly supported Hamiltonian diffeomorphism group on $(\mathring{\mathbb{D}},\omega)$. There is **Calabi homomorphism** denoted by $\operatorname{Cal}:\operatorname{Ham}_c(\mathring{\mathbb{D}},\omega)\to\mathbb{R}$ and defined by

$$\operatorname{Cal}(\phi_H^1) = 2 \int_{[0,1] \times \mathbb{D}} H(t,z) dt \wedge \omega.$$

- Denote by $\mathbb D$ the (closed) unit disk of $\mathbb C$, with the standard symplectic form $\omega=dx\wedge dy$ and primitive $\lambda=\frac{1}{2}(xdy-ydx)$.
- Let $\operatorname{Ham}_c(\mathring{\mathbb{D}},\omega)$ denote the compactly supported Hamiltonian diffeomorphism group on $(\mathring{\mathbb{D}},\omega)$. There is **Calabi homomorphism** denoted by $\operatorname{Cal}:\operatorname{Ham}_c(\mathring{\mathbb{D}},\omega)\to\mathbb{R}$ and defined by

$$\operatorname{Cal}(\phi_H^1) = 2 \int_{[0,1] \times \mathbb{D}} H(t,z) dt \wedge \omega.$$

• Strategy goes as follows.

$$\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega) \leadsto \begin{array}{l} \beta \text{ a contact form} \\ \text{ on solid torus } \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z} \\ \text{ (due to Bramham)} \end{array} \leadsto \begin{array}{l} \alpha \text{ a contact form} \\ \text{ on } S^3 \text{ satisfying (1)} \end{array}$$

$$\operatorname{vol}_{\alpha \wedge d\alpha}(S^3) = \pi^2 + \operatorname{Cal}(\phi). \tag{1}$$

- Denote by $\mathbb D$ the (closed) unit disk of $\mathbb C$, with the standard symplectic form $\omega=dx\wedge dy$ and primitive $\lambda=\frac{1}{2}(xdy-ydx)$.
- Let $\operatorname{Ham}_c(\mathring{\mathbb{D}},\omega)$ denote the compactly supported Hamiltonian diffeomorphism group on $(\mathring{\mathbb{D}},\omega)$. There is **Calabi homomorphism** denoted by $\operatorname{Cal}:\operatorname{Ham}_c(\mathring{\mathbb{D}},\omega)\to\mathbb{R}$ and defined by

$$\operatorname{Cal}(\phi_H^1) = 2 \int_{[0,1] \times \mathbb{D}} H(t,z) dt \wedge \omega.$$

• Strategy goes as follows.

$$\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega) \leadsto \begin{array}{l} \beta \text{ a contact form} \\ \text{ on solid torus } \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z} \\ \text{ (due to Bramham)} \end{array} \leadsto \begin{array}{l} \alpha \text{ a contact form} \\ \text{ on } S^3 \text{ satisfying (1)} \end{array}$$

$$\operatorname{vol}_{\alpha \wedge d\alpha}(S^3) = \pi^2 + \operatorname{Cal}(\phi). \tag{1}$$

Moreover, this ϕ is special since $Cal(\phi) < 0$ but $T_{min}(\alpha) \ge \pi$.

Radial symmetric Hamiltonian on $\mathbb D$

• Consider the autonomous Hamiltonian $H: \mathbb{D} \to \mathbb{R}$ such that $H(z) = h(|z|^2)$ where $h: [0,1] \to \mathbb{R}$ is defined in the following picture (where circle regions are smoothed),

• Consider the autonomous Hamiltonian $H: \mathbb{D} \to \mathbb{R}$ such that $H(z) = h(|z|^2)$ where $h: [0,1] \to \mathbb{R}$ is defined in the following picture (where circle regions are smoothed),

(1)
$$\phi_H^1(z) = e^{-2h'(|z|^2)i}z$$
.

(2)
$$\operatorname{Cal}(\phi_H^1) \approx \pi^2$$
.

In general,

$$\operatorname{Cal}(\phi_H^1) = 4\pi \int_0^1 rh(r^2) dr.$$

Radial symmetric Hamiltonian on $\mathbb D$

• Consider the autonomous Hamiltonian $H: \mathbb{D} \to \mathbb{R}$ such that $H(z) = h(|z|^2)$ where $h: [0,1] \to \mathbb{R}$ is defined in the following picture (where circle regions are smoothed),

(Exercise)
(1)
$$\phi_H^1(z) = e^{-2h'(|z|^2)i}z$$
.

(2)
$$\operatorname{Cal}(\phi_H^1) \approx \pi^2$$
.

In general,

$$\operatorname{Cal}(\phi_H^1) = 4\pi \int_0^1 rh(r^2) dr.$$

• Observe that fixed points lie in neighborhood of $\partial \mathbb{D}$ and z = 0.

Action function

Given a radial symmetric Hamiltonian function $H: \mathbb{D} \to \mathbb{R}$, where $H(z) = h(|z|^2)$. Consider **action function** $\sigma: \mathbb{D} \to \mathbb{R}$ defined by $\sigma(z) = h(|z|^2) - |z|^2 h'(|z|^2)$.

*This is the "y-intercept" of the tangent line along the graph of $h(|z|^2)$.

Action function

Given a radial symmetric Hamiltonian function $H: \mathbb{D} \to \mathbb{R}$, where $H(z) = h(|z|^2)$. Consider **action function** $\sigma: \mathbb{D} \to \mathbb{R}$ defined by $\sigma(z) = h(|z|^2) - |z|^2 h'(|z|^2).$

*This is the "y-intercept" of the tangent line along the graph of $h(|z|^2)$.

Remark

For a general $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$, action function is defined by $\sigma(z) = \int_{\{t \to \phi_t(z)\}} \lambda + \int_0^1 H_t(\phi_t(z)) dt$. (Exercise: $\phi^* \lambda - \lambda = d\sigma$.)

Action function

Given a radial symmetric Hamiltonian function $H: \mathbb{D} \to \mathbb{R}$, where $H(z) = h(|z|^2)$. Consider **action function** $\sigma: \mathbb{D} \to \mathbb{R}$ defined by $\sigma(z) = h(|z|^2) - |z|^2 h'(|z|^2)$.

*This is the "y-intercept" of the tangent line along the graph of $h(|z|^2)$.

Remark

For a general $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$, action function is defined by $\sigma(z) = \int_{\{t \to \phi_t(z)\}} \lambda + \int_0^1 H_t(\phi_t(z)) dt$. (Exercise: $\phi^* \lambda - \lambda = d\sigma$.)

Example

For H chosen earlier, action function is the following graph.

• Consider $\tau(z) = \sigma(z) + \pi$.

• Consider $\tau(z) = \sigma(z) + \pi$. Twisting map $t : \mathbb{D} \times \mathbb{R} \to \mathbb{D} \times \mathbb{R}$

$$t:(z,s)\to(\phi(z),s-\tau(z))$$

is a free \mathbb{Z} -action, denoted by \sim . Denote by $M:=(\mathbb{D}\times\mathbb{R})/\sim$.

• Consider $\tau(z) = \sigma(z) + \pi$. Twisting map $t : \mathbb{D} \times \mathbb{R} \to \mathbb{D} \times \mathbb{R}$

$$t:(z,s)\to(\phi(z),s-\tau(z))$$

is a free \mathbb{Z} -action, denoted by \sim . Denote by $M:=(\mathbb{D}\times\mathbb{R})/\sim$. More explicitly, observe that $(z,\tau(z))$ is identified with $(\phi(z),0)$, then M is like a solid torus in the shaded region after identifying the red sides.

• Consider $\tau(z) = \sigma(z) + \pi$. Twisting map $t : \mathbb{D} \times \mathbb{R} \to \mathbb{D} \times \mathbb{R}$

$$t:(z,s)\to(\phi(z),s-\tau(z))$$

is a free \mathbb{Z} -action, denoted by \sim . Denote by $M:=(\mathbb{D}\times\mathbb{R})/\sim$. More explicitly, observe that $(z,\tau(z))$ is identified with $(\phi(z),0)$, then M is like a solid torus in the shaded region after identifying the red sides.

• Observe that $t^*(\lambda + ds) = \lambda + ds$ (Exercise). Therefore, M admits a well-defined contact form denoted by η .

• Consider $\tau(z) = \sigma(z) + \pi$. Twisting map $t : \mathbb{D} \times \mathbb{R} \to \mathbb{D} \times \mathbb{R}$

$$t:(z,s)\to(\phi(z),s-\tau(z))$$

is a free \mathbb{Z} -action, denoted by \sim . Denote by $M:=(\mathbb{D}\times\mathbb{R})/\sim$. More explicitly, observe that $(z,\tau(z))$ is identified with $(\phi(z),0)$, then M is like a solid torus in the shaded region after identifying the red sides.

- Observe that $t^*(\lambda + ds) = \lambda + ds$ (Exercise). Therefore, M admits a well-defined contact form denoted by η .
- Near the boundary, $M = U \times \mathbb{R}/\pi\mathbb{Z}$ where U is a neighborhood of $\partial \mathbb{D}$ and $\eta = \lambda + ds$.

The desired contact form β is on the solid torus $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. There exists some diffeomorphism $f: \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z} \to M$ as in the following picture.

The desired contact form β is on the solid torus $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. There exists some diffeomorphism $f: \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z} \to M$ as in the following picture.

We need extra care to make sure that the area of each slice is preserved. Then define $\beta = f^*\eta$.

The desired contact form β is on the solid torus $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. There exists some diffeomorphism $f: \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z} \to M$ as in the following picture.

We need extra care to make sure that the area of each slice is preserved. Then define $\beta = f^*\eta$. Still, near the boundary, $\beta = \lambda + ds$ (since f is the identity near the boundary).

The desired contact form β is on the solid torus $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. There exists some diffeomorphism $f: \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z} \to M$ as in the following picture.

We need extra care to make sure that the area of each slice is preserved. Then define $\beta = f^*\eta$. Still, near the boundary, $\beta = \lambda + ds$ (since f is the identity near the boundary).

Example

One can compute that $\operatorname{vol}_{\beta \wedge d\beta}(\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}) = \operatorname{vol}_{\eta \wedge d\eta} M \simeq 2\pi^2$. Then, up to small gaps, we get

$$\operatorname{vol}_{\beta \wedge d\beta}(\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}) = \pi^2 + \operatorname{Cal}(\phi_H^1).$$

• Thomas taught us that S^3 is not far from $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$.

• Thomas taught us that S^3 is not far from $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. Denote by C the circle $\{|z_1|=1,\ z_2=0\}$ (which is a closed Reeb orbit of α_0), the morphism $g: \mathring{\mathbb{D}} \times \mathbb{R}/\pi\mathbb{Z} \to S^3 \backslash C$ defined by

$$g(r, \theta, s) = \left(re^{i(\theta+2s)}, \sqrt{1-r^2}e^{2is}\right)$$

is a diffeomorphism, which extends to map $\partial \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$ to the circle C.

• Thomas taught us that S^3 is not far from $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. Denote by C the circle $\{|z_1|=1,\ z_2=0\}$ (which is a closed Reeb orbit of α_0), the morphism $g: \mathring{\mathbb{D}} \times \mathbb{R}/\pi\mathbb{Z} \to S^3 \backslash C$ defined by

$$g(r,\theta,s) = \left(re^{i(\theta+2s)},\sqrt{1-r^2}e^{2is}\right)$$

is a diffeomorphism, which extends to map $\partial \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$ to the circle C. Moreover, $g^*\alpha_0 = \lambda + ds$.

• Thomas taught us that S^3 is not far from $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. Denote by C the circle $\{|z_1|=1,\ z_2=0\}$ (which is a closed Reeb orbit of α_0), the morphism $g: \mathring{\mathbb{D}} \times \mathbb{R}/\pi\mathbb{Z} \to S^3 \backslash C$ defined by

$$g(r, \theta, s) = \left(re^{i(\theta+2s)}, \sqrt{1-r^2}e^{2is}\right)$$

is a diffeomorphism, which extends to map $\partial \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$ to the circle C. Moreover, $g^*\alpha_0 = \lambda + ds$.

• Define $\alpha = (g^{-1})^*\beta$ (and extend). Notice that $\alpha = \alpha_0$ near C.

• Thomas taught us that S^3 is not far from $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. Denote by C the circle $\{|z_1|=1,\ z_2=0\}$ (which is a closed Reeb orbit of α_0), the morphism $g: \mathring{\mathbb{D}} \times \mathbb{R}/\pi\mathbb{Z} \to S^3 \backslash C$ defined by

$$g(r, \theta, s) = \left(re^{i(\theta+2s)}, \sqrt{1-r^2}e^{2is}\right)$$

is a diffeomorphism, which extends to map $\partial \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$ to the circle C. Moreover, $g^*\alpha_0 = \lambda + ds$.

• Define $\alpha = (g^{-1})^*\beta$ (and extend). Notice that $\alpha = \alpha_0$ near C.

Proposition

For each fixed $s \in \mathbb{R}/\pi\mathbb{Z}$, the image $\operatorname{im}(g|_{\mathbb{D}\times\{s\}})$ is a disk-like global surface of section (with boundary C) in S^3 .

• Thomas taught us that S^3 is not far from $\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$. Denote by C the circle $\{|z_1|=1,\ z_2=0\}$ (which is a closed Reeb orbit of α_0), the morphism $g: \mathring{\mathbb{D}} \times \mathbb{R}/\pi\mathbb{Z} \to S^3 \backslash C$ defined by

$$g(r,\theta,s) = \left(re^{i(\theta+2s)}, \sqrt{1-r^2}e^{2is}\right)$$

is a diffeomorphism, which extends to map $\partial \mathbb{D} \times \mathbb{R}/\pi\mathbb{Z}$ to the circle C. Moreover, $g^*\alpha_0 = \lambda + ds$.

• Define $\alpha = (g^{-1})^*\beta$ (and extend). Notice that $\alpha = \alpha_0$ near C.

Proposition

For each fixed $s \in \mathbb{R}/\pi\mathbb{Z}$, the image $\operatorname{im}(g|_{\mathbb{D}\times\{s\}})$ is a disk-like global surface of section (with boundary C) in S^3 .

• $\operatorname{vol}_{\alpha \wedge d\alpha}(S^3) = \operatorname{vol}_{\beta \wedge d\beta}(\mathbb{D} \times \mathbb{R}/\pi\mathbb{Z})$, which implies the volume-Calabi equation (1). Moreover, $T_{\min}(\alpha) = \pi$ (Exercise).

• So far, we have seen an example that some $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$ results in a contact 1-form α on S^3 which can satisfy the volume-Calabi equation (1) and $T_{\min}(\alpha) = \pi$, but unfortunately $\operatorname{Cal}(\phi) > 0$.

- So far, we have seen an example that some $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$ results in a contact 1-form α on S^3 which can satisfy the volume-Calabi equation (1) and $T_{\min}(\alpha) = \pi$, but unfortunately $\operatorname{Cal}(\phi) > 0$.
- A cheap way to achieve $\operatorname{Cal}(\phi) < 0$ is by considering $\overline{H} := -H$. Then $\operatorname{Cal}(\phi \frac{1}{H}) \approx -\pi^2$.

- So far, we have seen an example that some $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$ results in a contact 1-form α on S^3 which can satisfy the volume-Calabi equation (1) and $T_{\min}(\alpha) = \pi$, but unfortunately $\operatorname{Cal}(\phi) > 0$.
- A cheap way to achieve $\operatorname{Cal}(\phi) < 0$ is by considering $\overline{H} := -H$. Then $\operatorname{Cal}(\phi \frac{1}{H}) \approx -\pi^2$. In this case, the action function and the resulting Bramham's construction are the following,

- So far, we have seen an example that some $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$ results in a contact 1-form α on S^3 which can satisfy the volume-Calabi equation (1) and $T_{\min}(\alpha) = \pi$, but unfortunately $\operatorname{Cal}(\phi) > 0$.
- A cheap way to achieve $\operatorname{Cal}(\phi) < 0$ is by considering $\overline{H} := -H$. Then $\operatorname{Cal}(\phi \frac{1}{H}) \approx -\pi^2$. In this case, the action function and the resulting Bramham's construction are the following,

The equation (1) holds, but unfortunately $T_{\min}(\alpha)$ is very small!

- So far, we have seen an example that some $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega)$ results in a contact 1-form α on S^3 which can satisfy the volume-Calabi equation (1) and $T_{\min}(\alpha) = \pi$, but unfortunately $\operatorname{Cal}(\phi) > 0$.
- A cheap way to achieve $\operatorname{Cal}(\phi) < 0$ is by considering $\overline{H} := -H$. Then $\operatorname{Cal}(\phi \frac{1}{H}) \approx -\pi^2$. In this case, the action function and the resulting Bramham's construction are the following,

The equation (1) holds, but unfortunately $T_{\min}(\alpha)$ is very small!

• Need a new example to satisfy both $Cal(\phi) < 0$ and $T_{min}(\alpha) \ge \pi$.

Sinkhole (cf. Usher's Banach-Mazur distance paper)

Example

Consider a disk inside \mathbb{D} , denoted by $\mathbb{D}_{(z_0,r_0)}=\{|z-z_0|\leq r_0\}$

Sinkhole (cf. Usher's Banach-Mazur distance paper)

Example

Consider a disk inside \mathbb{D} , denoted by $\mathbb{D}_{(z_0,r_0)} = \{|z-z_0| \le r_0\}$ and an autonomous Hamiltonian compactly supported inside $\mathring{\mathbb{D}}_{(z_0,r_0)}$ given by, up to smoothing,

$$H(z) = -k \cdot \left(1 - \frac{|z - z_0|^2}{r_0^2}\right)$$
, where $k > 0$.

Example

Consider a disk inside \mathbb{D} , denoted by $\mathbb{D}_{(z_0,r_0)}=\{|z-z_0|\leq r_0\}$ and an autonomous Hamiltonian compactly supported inside $\mathring{\mathbb{D}}_{(z_0,r_0)}$ given by, up to smoothing,

$$H(z) = -k \cdot \left(1 - \frac{|z - z_0|^2}{r_0^2}\right)$$
, where $k > 0$.

• Cal(
$$\phi$$
) $\approx -k\pi r_0^2$;

Example

Consider a disk inside \mathbb{D} , denoted by $\mathbb{D}_{(z_0,r_0)}=\{|z-z_0|\leq r_0\}$ and an autonomous Hamiltonian compactly supported inside $\mathring{\mathbb{D}}_{(z_0,r_0)}$ given by, up to smoothing,

$$H(z) = -k \cdot \left(1 - \frac{|z - z_0|^2}{r_0^2}\right)$$
, where $k > 0$.

- Cal(ϕ) $\approx -k\pi r_0^2$;
- $\sigma(z) = will$ be explained in 5 mins.

Example

Consider a disk inside \mathbb{D} , denoted by $\mathbb{D}_{(z_0,r_0)}=\{|z-z_0|\leq r_0\}$ and an autonomous Hamiltonian compactly supported inside $\mathring{\mathbb{D}}_{(z_0,r_0)}$ given by, up to smoothing,

$$H(z) = -k \cdot \left(1 - \frac{|z - z_0|^2}{r_0^2}\right)$$
, where $k > 0$.

- Cal $(\phi) \approx -k\pi r_0^2$;
- $\sigma(z) = will$ be explained in 5 mins.
- Trick: Fix an ω -preserving diffeomorphism ψ on $\mathring{\mathbb{D}}$ such that $\psi(z)=z+z_0$ on $\mathbb{D}_{(0,r_0)}$, and consider $G=H\circ \psi$.

Example

Consider a disk inside \mathbb{D} , denoted by $\mathbb{D}_{(z_0,r_0)}=\{|z-z_0|\leq r_0\}$ and an autonomous Hamiltonian compactly supported inside $\mathring{\mathbb{D}}_{(z_0,r_0)}$ given by, up to smoothing,

$$H(z) = -k \cdot \left(1 - \frac{|z - z_0|^2}{r_0^2}\right)$$
, where $k > 0$.

- Cal $(\phi) \approx -k\pi r_0^2$;
- $\sigma(z) = will$ be explained in 5 mins.
- Trick: Fix an ω -preserving diffeomorphism ψ on $\mathring{\mathbb{D}}$ such that $\psi(z)=z+z_0$ on $\mathbb{D}_{(0,r_0)}$, and consider $G=H\circ\psi$. Then the morphism $\phi_G^1=\psi^{-1}\circ\phi_H^1\circ\psi$ rotates the disk $\mathbb{D}_{(0,r_0)}$.

• The following conjugation formulas for Cal and σ are useful. Denote by $\sigma = \sigma_{\phi}$ to emphasize its dependence on morphism ϕ .

ullet The following conjugation formulas for Cal and σ are useful. Denote by $\sigma=\sigma_\phi$ to emphasize its dependence on morphism ϕ .

Proposition (Exercise)

For any ω -preserving diffeomorphism ψ on $\mathring{\mathbb{D}}$,

- $\operatorname{Cal}(\psi^{-1} \circ \phi \circ \psi) = \operatorname{Cal}(\phi);$
- $\sigma_{\psi^{-1}\circ\phi\circ\psi} = \sigma_{\phi}\circ\psi + u u\circ(\psi^{-1}\circ\phi\circ\psi)$, where $du = \psi^*\lambda \lambda$.

ullet The following conjugation formulas for Cal and σ are useful. Denote by $\sigma=\sigma_\phi$ to emphasize its dependence on morphism ϕ .

Proposition (Exercise)

For any ω -preserving diffeomorphism ψ on $\mathring{\mathbb{D}}$,

- $\operatorname{Cal}(\psi^{-1} \circ \phi \circ \psi) = \operatorname{Cal}(\phi);$
- $\sigma_{\psi^{-1}\circ\phi\circ\psi} = \sigma_{\phi}\circ\psi + u u\circ(\psi^{-1}\circ\phi\circ\psi)$, where $du = \psi^*\lambda \lambda$.

In particular, for our example, $u=\frac{1}{2}(x_0y-y_0x)$ on $\mathbb{D}_{(0,r_0)}$, where $z_0=x_0+iy_0$.

• The following conjugation formulas for Cal and σ are useful. Denote by $\sigma=\sigma_\phi$ to emphasize its dependence on morphism ϕ .

Proposition (Exercise)

For any ω -preserving diffeomorphism ψ on $\mathring{\mathbb{D}}$,

- $\operatorname{Cal}(\psi^{-1} \circ \phi \circ \psi) = \operatorname{Cal}(\phi);$
- $\sigma_{\psi^{-1}\circ\phi\circ\psi} = \sigma_{\phi}\circ\psi + u u\circ(\psi^{-1}\circ\phi\circ\psi)$, where $du = \psi^*\lambda \lambda$.

In particular, for our example, $u = \frac{1}{2}(x_0y - y_0x)$ on $\mathbb{D}_{(0,r_0)}$, where $z_0 = x_0 + iy_0$. Moreover,

$$\sigma_{\phi} = \sigma_{\psi^{-1} \circ \phi \circ \psi} \circ \psi^{-1} + \underbrace{u \circ (\psi^{-1} \circ \phi) - u \circ \psi^{-1}}_{\text{hard to be precise}}.$$

• The following conjugation formulas for Cal and σ are useful. Denote by $\sigma = \sigma_{\phi}$ to emphasize its dependence on morphism ϕ .

Proposition (Exercise)

For any ω -preserving diffeomorphism ψ on \mathbb{D} ,

- $\operatorname{Cal}(\psi^{-1} \circ \phi \circ \psi) = \operatorname{Cal}(\phi)$;
- $\sigma_{\psi^{-1}\circ\phi\circ\psi}=\sigma_{\phi}\circ\psi+u-u\circ(\psi^{-1}\circ\phi\circ\psi)$, where $du = \psi^* \lambda - \lambda$.

In particular, for our example, $u = \frac{1}{2}(x_0y - y_0x)$ on $\mathbb{D}_{(0,r_0)}$, where $z_0 = x_0 + iy_0$. Moreover,

$$\sigma_{\phi} = \sigma_{\psi^{-1} \circ \phi \circ \psi} \circ \psi^{-1} + \underbrace{u \circ (\psi^{-1} \circ \phi) - u \circ \psi^{-1}}_{\text{hard to be precise}}.$$

An estimation: $|u \circ (\psi^{-1} \circ \phi) - u \circ \psi^{-1}| \le r_0 |z_0| \le r_0$, which implies that

$$-k-r_0 \le \sigma_\phi \le r_0. \tag{2}$$

Consider sinkholes \mathbb{D}_i for i=1,...,4, sitting inside \mathbb{D} in the following symmetric way.

Consider sinkholes \mathbb{D}_i for i=1,...,4, sitting inside \mathbb{D} in the following symmetric way.

Consider the following Hamiltonian diffeomorphisms.

(1)
$$\phi^+$$
 the rotation of $\mathbb D$ by $\frac{\pi}{2}$. Profile: $h(|z|^2) = \frac{\pi}{4}(1-|z|^2)$.

Consider sinkholes \mathbb{D}_i for i=1,...,4, sitting inside \mathbb{D} in the following symmetric way.

Consider the following Hamiltonian diffeomorphisms.

- (1) ϕ^+ the rotation of $\mathbb D$ by $\frac{\pi}{2}$. Profile: $h(|z|^2) = \frac{\pi}{4}(1-|z|^2)$.
- (2) ϕ_i^- the rotation of \mathbb{D}_i by -0.73π . (Caution: opposite direction!) Profile: $h(|z|^2) = -0.365\pi \left(1 \frac{|z-z_i|^2}{r^2}\right)$.

Consider sinkholes \mathbb{D}_i for i=1,...,4, sitting inside \mathbb{D} in the following symmetric way.

Consider the following Hamiltonian diffeomorphisms.

- (1) ϕ^+ the rotation of \mathbb{D} by $\frac{\pi}{2}$. Profile: $h(|z|^2) = \frac{\pi}{4}(1-|z|^2)$.
- (2) ϕ_i^- the rotation of \mathbb{D}_i by -0.73π . (Caution: opposite direction!) Profile: $h(|z|^2) = -0.365\pi \left(1 \frac{|z-z_i|^2}{r^2}\right)$.

Denote

$$\phi = \phi^+ \circ \prod_{i=1}^4 \phi_i^-.$$

• Compute $Cal(\phi)$ (recall that Cal is a homomorphism).

• Compute $Cal(\phi)$ (recall that Cal is a homomorphism).

$$Cal(\phi) = Cal(\phi^+) + \sum_{i=1}^{4} Cal(\phi_i^-)$$

$$= \frac{\pi^2}{4} + 4(-0.365\pi \cdot \pi \cdot r^2) = -0.0004964\pi^2 < 0.$$

ullet Compute Cal(ϕ) (recall that Cal is a homomorphism).

$$Cal(\phi) = Cal(\phi^{+}) + \sum_{i=1}^{4} Cal(\phi_{i}^{-})$$
$$= \frac{\pi^{2}}{4} + 4(-0.365\pi \cdot \pi \cdot r^{2}) = -0.0004964\pi^{2} < 0.$$

 \bullet Compute $\sigma=\sigma_{\phi}.$ We need the following composition formula

$$\sigma_{\phi_2 \circ \phi_1} = \sigma_{\phi_2} \circ \phi_1 + \sigma_{\phi_1}$$
 (Exercise).

• Compute $Cal(\phi)$ (recall that Cal is a homomorphism).

$$Cal(\phi) = Cal(\phi^{+}) + \sum_{i=1}^{4} Cal(\phi_{i}^{-})$$
$$= \frac{\pi^{2}}{4} + 4(-0.365\pi \cdot \pi \cdot r^{2}) = -0.0004964\pi^{2} < 0.$$

ullet Compute $\sigma=\sigma_{\phi}$. We need the following composition formula

$$\sigma_{\phi_2 \circ \phi_1} = \sigma_{\phi_2} \circ \phi_1 + \sigma_{\phi_1}$$
 (Exercise).

Then we can compute

$$egin{aligned} \sigma_{\phi} &= \sigma_{\phi^+} \circ \left(\prod_{i=1}^4 \phi_i^-
ight) + \sigma_{\prod_{i=1}^4 \phi_i^-} \ &= \sigma_{\phi^+} \circ \left(\prod_{i=1}^4 \phi_i^-
ight) + \sum_{i=1}^4 \sigma_{\phi_i^-}. \end{aligned}$$

Though we can not explicitly describe σ_{ϕ} , here are some observations.

Though we can not explicitly describe σ_{ϕ} , here are some observations.

• By (2), we have an estimation. For any $z \in \mathbb{D}$,

$$\sigma_{\phi}(z) \ge 0 + (-0.365\pi - (\sqrt{2} - 1)) = -1.56 > -\frac{\pi}{2}.$$

Though we can not explicitly describe σ_{ϕ} , here are some observations.

• By (2), we have an estimation. For any $z \in \mathbb{D}$,

$$\sigma_{\phi}(z) \ge 0 + (-0.365\pi - (\sqrt{2} - 1)) = -1.56 > -\frac{\pi}{2}.$$

• Since $0 \notin \bigcup_{i=1}^4 \mathbb{D}_i$, $\sigma_{\phi}(0) = \sigma_{\phi^+}(0) = \frac{\pi}{4} > 0$.

Though we can not explicitly describe σ_{ϕ} , here are some observations.

• By (2), we have an estimation. For any $z \in \mathbb{D}$,

$$\sigma_{\phi}(z) \ge 0 + (-0.365\pi - (\sqrt{2} - 1)) = -1.56 > -\frac{\pi}{2}.$$

• Since $0 \notin \bigcup_{i=1}^4 \mathbb{D}_i$, $\sigma_{\phi}(0) = \sigma_{\phi^+}(0) = \frac{\pi}{4} > 0$.

Recall that in Bramham's construction, (in order to get a free \mathbb{Z} -action), we consider a shifted action function

$$\tau = \sigma_{\phi} + \pi.$$

Though we can not explicitly describe σ_{ϕ} , here are some observations.

• By (2), we have an estimation. For any $z \in \mathbb{D}$,

$$\sigma_{\phi}(z) \ge 0 + (-0.365\pi - (\sqrt{2} - 1)) = -1.56 > -\frac{\pi}{2}.$$

• Since $0 \notin \bigcup_{i=1}^4 \mathbb{D}_i$, $\sigma_{\phi}(0) = \sigma_{\phi^+}(0) = \frac{\pi}{4} > 0$.

Recall that in Bramham's construction, (in order to get a free \mathbb{Z} -action), we consider a shifted action function

$$\tau = \sigma_{\phi} + \pi$$
.

A schematic picture of Bramham's solid torus (denoted earlier by M) is the following.

Closed Reeb orbit comes from two cases: (1) fixed point of ϕ on \mathbb{D} ; (2) k-periodic points of ϕ on \mathbb{D} .

Closed Reeb orbit comes from two cases: (1) fixed point of ϕ on \mathbb{D} ; (2) k-periodic points of ϕ on \mathbb{D} .

• For Case (1), the only fixed point of ϕ is 0, and its period is $\tau(0) = \sigma_{\phi}(0) + \pi \geq \pi$.

Closed Reeb orbit comes from two cases: (1) fixed point of ϕ on \mathbb{D} ; (2) k-periodic points of ϕ on \mathbb{D} .

- For Case (1), the only fixed point of ϕ is 0, and its period is $\tau(0) = \sigma_{\phi}(0) + \pi \ge \pi$.
- For Case (2), for any k-periodic points (where $k \geq 2$), the corresponding closed orbit has its period equal to $k\tau(z) = k(\sigma_{\phi}(z) + \pi) \geq k \cdot \frac{\pi}{2} \geq \pi$.

Closed Reeb orbit comes from two cases: (1) fixed point of ϕ on \mathbb{D} ; (2) k-periodic points of ϕ on \mathbb{D} .

- For Case (1), the only fixed point of ϕ is 0, and its period is $\tau(0) = \sigma_{\phi}(0) + \pi \ge \pi$.
- For Case (2), for any k-periodic points (where $k \geq 2$), the corresponding closed orbit has its period equal to $k\tau(z) = k(\sigma_{\phi}(z) + \pi) \geq k \cdot \frac{\pi}{2} \geq \pi$.
- \Rightarrow The conclusion is that $T_{\min}(\alpha) \ge \pi$.

Closed Reeb orbit comes from two cases: (1) fixed point of ϕ on \mathbb{D} ; (2) k-periodic points of ϕ on \mathbb{D} .

- For Case (1), the only fixed point of ϕ is 0, and its period is $\tau(0) = \sigma_{\phi}(0) + \pi \ge \pi$.
- For Case (2), for any k-periodic points (where $k \geq 2$), the corresponding closed orbit has its period equal to $k\tau(z) = k(\sigma_{\phi}(z) + \pi) \geq k \cdot \frac{\pi}{2} \geq \pi$.
- \Rightarrow The conclusion is that $T_{\min}(\alpha) \ge \pi$.

The upshot is:

$$\begin{cases} \operatorname{vol}_{\alpha \wedge d\alpha}(S^3) = \pi^2 + \operatorname{Cal}(\phi) \\ \operatorname{Cal}(\phi) < 0 \\ T_{\min}(\alpha) \ge \pi \end{cases} \Rightarrow T_{\min}(\alpha)^2 > \operatorname{vol}_{\alpha \wedge d\alpha}(S^3).$$

• One can re-do the computation above by starting with a very narrow sector of $\mathbb D$ and rotate it making it symmetric. Then the resulting ϕ will be C^0 -close to $\mathbb 1_{\mathbb D}$ (and α is C^0 -closed to α_0).

- One can re-do the computation above by starting with a very narrow sector of $\mathbb D$ and rotate it making it symmetric. Then the resulting ϕ will be C^0 -close to $\mathbb 1_{\mathbb D}$ (and α is C^0 -closed to α_0).
- With higher regularity, the α we constructed in this talk is far from α_0 . In fact, it is far from any **Zoll contact form**, i.e., all the Reeb orbits are closed and the periods are the same.

- One can re-do the computation above by starting with a very narrow sector of $\mathbb D$ and rotate it making it symmetric. Then the resulting ϕ will be C^0 -close to $\mathbb 1_{\mathbb D}$ (and α is C^0 -closed to α_0).
- With higher regularity, the α we constructed in this talk is far from α_0 . In fact, it is far from any **Zoll contact form**, i.e., all the Reeb orbits are closed and the periods are the same. This is due to the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)

There exists a C^3 -neighborhood $\mathcal N$ of the space of Zoll contact forms on S^3 such that for any $\alpha \in \mathcal N$,

$$T_{\min}(\alpha)^2 \leq \operatorname{vol}_{\alpha \wedge d\alpha}(S^3).$$

The equality holds if and only if α is Zoll.

- One can re-do the computation above by starting with a very narrow sector of $\mathbb D$ and rotate it making it symmetric. Then the resulting ϕ will be C^0 -close to $\mathbb 1_{\mathbb D}$ (and α is C^0 -closed to α_0).
- With higher regularity, the α we constructed in this talk is far from α_0 . In fact, it is far from any **Zoll contact form**, i.e., all the Reeb orbits are closed and the periods are the same. This is due to the following result.

Theorem (Abbondandolo-Bramham-Hryniewicz-Salomão, 2018)

There exists a C^3 -neighborhood $\mathcal N$ of the space of Zoll contact forms on S^3 such that for any $\alpha \in \mathcal N$,

$$T_{\min}(\alpha)^2 \le \operatorname{vol}_{\alpha \wedge d\alpha}(S^3).$$

The equality holds if and only if α is Zoll.

Its proof runs our construction backwards, i.e., constructing an ω -preserving diffeomorphism on \mathbb{D} from a contact form on S^3 .

Three ways to transfer dynamics to geometry.

Three ways to transfer dynamics to geometry.

• Bramham's construction: $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega) \longrightarrow (S^3, \alpha)$ (which bounds a star-shaped domain in \mathbb{R}^4).

Three ways to transfer dynamics to geometry.

- Bramham's construction: $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega) \longrightarrow (S^3, \alpha)$ (which bounds a star-shaped domain in \mathbb{R}^4).
- Eliashberg-Polterovich's construction: given a positive loop of contactomorphisms $\phi = \{\phi_t\}_{t \in S^1}$ on a Liouville-fillable contact manifold (X,α) .

Three ways to transfer dynamics to geometry.

- Bramham's construction: $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega) \longrightarrow (S^3, \alpha)$ (which bounds a star-shaped domain in \mathbb{R}^4).
- Eliashberg-Polterovich's construction: given a positive loop of contactomorphisms $\phi = \{\phi_t\}_{t \in S^1}$ on a Liouville-fillable contact manifold (X,α) . The following construction results in a contact star-shaped domain $V(\phi) \subset \widehat{W} \times S^1$,

$$V(\phi) := \{(s, x, t) \in SX \times S^1 \mid s \cdot h(t, x) < 1\} \cup (Core \times S^1)$$

where h(t,x) is the contact Hamiltonian of ϕ .

Three ways to transfer dynamics to geometry.

- Bramham's construction: $\phi \in \operatorname{Ham}_c(\mathring{\mathbb{D}}, \omega) \longrightarrow (S^3, \alpha)$ (which bounds a star-shaped domain in \mathbb{R}^4).
- Eliashberg-Polterovich's construction: given a positive loop of contactomorphisms $\phi = \{\phi_t\}_{t \in S^1}$ on a Liouville-fillable contact manifold (X,α) . The following construction results in a contact star-shaped domain $V(\phi) \subset \widehat{W} \times S^1$,

$$V(\phi) := \{(s, x, t) \in SX \times S^1 \mid s \cdot h(t, x) < 1\} \cup (\operatorname{Core} \times S^1)$$

where h(t,x) is the contact Hamiltonian of ϕ .

• Usher's tube construction: given a Liouville domain (W,λ) and an autonomous Hamiltonian function $H:W\to\mathbb{R}$ satisfying certain "positivity condition", the following construction results in another Liouville domain,

$$W_H := \{(w, z) \in W \times \mathbb{C} \mid \pi |z|^2 \le H(w)\}.$$

